游客
题文

已知圆A:轴负半轴交于B点,过B的弦BE与轴正半轴交于D点,且2BD=DE,曲线C是以A,B为焦点且过D点的椭圆。(1)求椭圆的方程;(2)点P在椭圆C上运动,点Q在圆A上运动,求PQ+PD的最大值。

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知直线,圆,椭圆的离心率,直线被圆截得的弦长与椭圆的短轴长相等.求椭圆的方程;已知动直线(斜率存在)与椭圆交于两个不同点,且△的面积为,若为线段的中点,问:在轴上是否存在两个定点使得直线的斜率之积为定值?若存在,求出的坐标,若不存在,说明理由.

已知数列满足,数列满足:,数列的前项和为
(1)求证:数列为等比数列;
(2)求证:数列为递增数列;
(3)若当且仅当时,取得最小值,求的取值范围.

在三棱柱中,侧面为矩形,的中点,交于点,且平面

(1)证明:
(2)若,求直线与平面所成角的正弦值.

已知
(1)最小正周期及对称轴方程;
(2)已知锐角的内角的对边分别为,且 ,求边上的高的最大值.

在数列中,,且对任意的成等比数列,其公比为
(1)若=2(),求
(2)若对任意的成等差数列,其公差为,设
① 求证:成等差数列,并指出其公差;
② 若=2,试求数列的前项的和

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号