(本小题满分12分)如图,在三棱锥中,
底面
,
,
是
的中点,且
,
.
(1)求证:平面平面
;(2)当角
变化时,求直线
与平面
所成的角
的取值范围。
设椭圆 的左右焦点分别为 ,离心率 ,点 到右准线为 的距离为
(Ⅰ)求 的值;
(Ⅱ)设 是 上的两个动点, ,证明:当 取最小值时,
设数列
的前
项和为
,
(Ⅰ)求
,
(Ⅱ)证明: 是等比数列;
(Ⅲ)求 的通项公式
设
和
是函数
的两个极值点.
(Ⅰ)求
和
的值;
(Ⅱ)求 的单调区间
如图,平面 平面 ,四边形 与 都是直角梯形, 分别为 中点.
(Ⅰ)证明:四边形
是平行四边形;
(Ⅱ)
四点是否共面?为什么?
(Ⅲ)设
,证明:平面
平面
;
设进入某商场的每一位顾客购买甲种商品的概率为 ,购买乙种商品的概率为 ,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(Ⅱ)求进入商场的3位顾客中至少有2位顾客既未购买甲种也未购买乙种商品的概率。