某电器商经过多年的经验发现本店每个月售出的电冰箱的台数是一个随机变量,它的分布列如下:
![]() |
1 |
2 |
3 |
…… |
12 |
P |
![]() |
![]() |
![]() |
…… |
![]() |
设每售出一台电冰箱,电器商获利300元。如销售不出而囤积于仓库,则每台每月需花保养费100元。问电器商每月初购进多少台电冰箱才能使自己月平均收益最大?
(本小题满分12分)已知抛物线的顶点在坐标原点
,对称轴为
轴,焦点为
,抛物线上一点
的横坐标为
,且
.
(Ⅰ)求此抛物线的方程;
(Ⅱ)过点做直线
交抛物线
于
两点,求证:
.
(本小题满分12分)已知命题:在
上定义运算
:
不等式
对任意实数
恒成立;命题
:若不等式
对任意的
恒成立.若
为假命题,
为真命题,求实数
的取值范围.
(本小题满分12分)在中,角
的对边分别为
,已知
.
(Ⅰ)求角的大小;
(Ⅱ)若,求△
的面积.
已知椭圆:
的离心率为
,过椭圆
右焦点
的直线
与椭圆
交于点
(点
在第一象限).
(Ⅰ)求椭圆的方程;
(Ⅱ)已知为椭圆
的左顶点,平行于
的直线
与椭圆相交于
两点.判断直线
是否关于直线
对称,并说明理由.
已知圆的圆心在直线
上,且与
轴交于两点
,
.
(Ⅰ)求圆的方程;
(Ⅱ)求过点的圆
的切线方程;
(Ⅲ)已知,点
在圆
上运动,求以
,
为一组邻边的平行四边形的另一个顶点
轨迹
方程.