游客
题文

给定锐角三角形PBC.设AD分别是边PBPC上的点,连接ACBD,相交于点O. 过点O分别作OEABOFCD,垂足分别为EF,线段BCAD的中点分别为M,N.
(1)若ABCD四点共圆,求证:
(2)若,是否一定有ABCD四点共圆?证明你的结论.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

在打靶训练中,某战士射击一次的成绩在9环(包括9环)以上的概率是0.18,在8~9环(包括8环)的概率是0.51,在7~8环(包括7环)的概率是0.15,在6~7环(包括6环)的概率是0.09.计算该战士在打靶训练中射击一次取得8环(包括8环)以上成绩的概率和该战士打靶及格(及格指6环以上包括6环)的概率.

已知为椭圆上的三个点,为坐标原点.
(1)若所在的直线方程为,求的长;
(2)设为线段上一点,且,当中点恰为点时,判断的面积是否为常数,并说明理由.

已知抛物线,点,过的直线交抛物线两点.
(1)若线段中点的横坐标等于,求直线的斜率;
(2)设点关于轴的对称点为,求证:直线过定点.

如图,在四棱锥中,底面是边长为的正方形,,且

(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)棱上是否存在一点,使直线与平面所成的角是?若存在,求的长;若不存在,请说明理由.

如图,在四棱锥中,底面为矩形,底面分别是中点.

(1)求证:平面
(2)求证:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号