给定锐角三角形PBC,.设A,D分别是边PB,PC上的点,连接AC,BD,相交于点O. 过点O分别作OE⊥AB,OF⊥CD,垂足分别为E,F,线段BC,AD的中点分别为M,N.
(1)若A,B,C,D四点共圆,求证:;
(2)若,是否一定有A,B,C,D四点共圆?证明你的结论.
在打靶训练中,某战士射击一次的成绩在9环(包括9环)以上的概率是0.18,在8~9环(包括8环)的概率是0.51,在7~8环(包括7环)的概率是0.15,在6~7环(包括6环)的概率是0.09.计算该战士在打靶训练中射击一次取得8环(包括8环)以上成绩的概率和该战士打靶及格(及格指6环以上包括6环)的概率.
已知为椭圆
上的三个点,
为坐标原点.
(1)若所在的直线方程为
,求
的长;
(2)设为线段
上一点,且
,当
中点恰为点
时,判断
的面积是否为常数,并说明理由.
已知抛物线,点
,过
的直线
交抛物线
于
两点.
(1)若线段中点的横坐标等于
,求直线
的斜率;
(2)设点关于
轴的对称点为
,求证:直线
过定点.
如图,在四棱锥中,底面
是边长为
的正方形,
,
,且
.
(Ⅰ)求证:平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)棱上是否存在一点
,使直线
与平面
所成的角是
?若存在,求
的长;若不存在,请说明理由.
如图,在四棱锥中,底面
为矩形,
底面
,
、
分别是
、
中点.
(1)求证:平面
;
(2)求证:.