在直角坐标平面中,△的两个顶点
的坐标分别为
,
,平面内两点
同时满足下列条件:①
=0;②
;③
∥
(1)求△
的顶点
的轨迹方程;(2)过点
直线
与(1)中轨迹交于不同的两点
,求△
面积的最大值.
在△ABC中,已知A=,
.
(Ⅰ)求cosC的值;
(Ⅱ)若BC=2,D为AB的中点,求CD的长.
(本小题满分10分)选修4-5:不等式选讲
已知函数,
.
(1)若关于的不等式
的解集为
,求实数
的值;
(2)若的图象恒在
图象的上方,求实数
的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程
已知圆锥曲线(
为参数)和定点
,
、
是此圆锥曲线的左、右焦点,以原点
为极点,以
轴的正半轴为极轴建立极坐标系.
(1)求直线的直角坐标方程;
(2)经过点且与直线
垂直的直线
交此圆锥曲线于
、
两点,求
的值.
(本小题满分10分)选修4-1:几何证明选讲
如图,为圆的内接三角形,
,
为圆的弦,且
,过点
作圆的切线与
的延长线交于点
,
与
交于点
.
(1)求证:四边形为平行四边形;
(2)若,
,求线段
的长.
已知函数在
处取得极值.
(1)求的值;
(2)求函数在
上的最小值;
(3)求证:对任意、
,都有
.