物体A质量为,用两根轻绳B、C连接到竖直墙上,在物体A上加一恒力F,若图中力F、轻绳AB与水平线夹角均为
,要使两绳都能绷直,求恒力F的大小。
某一直流电动机提升重物的装置,如图所示,重物的质量m=50kg,电源提供给电动机的电压为U=110V,不计各种摩擦,当电动机以v=0.9m/s的恒定速率向上提升重物时,电路中的电流强度I=5.0A,求电动机的线圈电阻大小(取g=10m/s2)。
在地球表面附近发射卫星,当卫星的速度超过某一速度时,卫星就会脱离地球的引力,不再绕地球运行,这个速度叫做第二宇宙速度.规定物体在无限远处万有引力势能EP=0,则物体的万有引力势能可表示为EP=-GMm/r,r为物体离地心的距离.设地球半径为r0,地球表面重力加速度为g0,忽略空气阻力的影响,试根据所学的知识,推导第二宇宙速度的表达式(用r0、 g0表示)
如图所示,半径R=0.80m的1/4光滑圆弧轨道竖直固定,过最低点的半径OC处于竖直位置.其右方有底面半径r=0.2m的转筒,转筒顶端与C等高,下部有一小孔,距顶端h=0.8m.转筒的轴线与圆弧轨道在同一竖直平面内,开始时小孔也在这一平面内的图示位置.今让一质量m=0.1kg的小物块自A点由静止开始下落后打在圆弧轨道上的B点,但未反弹,在瞬问碰撞过程中,小物块沿半径方向的分速度立刻减为O,而沿切线方向的分速度不变.此后,小物块沿圆弧轨道滑下,到达C点时触动光电装置,使转筒立刻以某一角速度匀速转动起来,且小物块最终正好进入小孔.已知A、B到圆心O的距离均为R,与水平方向的夹角均为θ=30°,不计空气阻力,g取l0m/s2.求:
(1)小物块到达C点时对轨道的压力大小FC;
(2)转筒轴线距C点的距离L;
(3)转筒转动的角速度ω.
重力势能EP=mgh实际上是万有引力势能在地面附近的近似表达式,其更精确的表达式为EP=-GMm/r,式中G为万有引力恒量,M为地球质量,m为物体质量,r为物体到地心的距离,并以无限远处引力势能为零。现有一质量为m的地球卫星,在离地面高度为H处绕地球做匀速圆周运动。已知地球半径为R,地球表面的重力加速度为g,地球质量未知,试求:
(1)卫星做匀速圆周运动的线速度;
(2)卫星的引力势能;
(3)卫星的机械能;
(4)若要使卫星能依靠惯性飞离地球(飞到引力势能为零的地方),则卫星至少要具有多大的初速度?
为了保证行车安全,不仅需要车辆有良好的刹车性能,还需要在行车过程中前后车辆保持一定的距离.驾驶手册规定,在一级公路上,允许行车速度为υ1,发现情况后需在S1距离内被刹住.在高速公路上,允许行车速度为υ2(υ2>υ1),发现情况后需在S2(S2>S1)距离内被刹住。假设对于这两种情况驾驶员允许的反应时间(发现情况到开始刹车经历的时间)与刹车后的加速度都相等,求允许驾驶员的反应时间和刹车加速度.