求数列的前
项和.
已知函数(其中
为常数,
)的图象过点,
.
(1)求
(2)若不等式在
时恒成立,求
的取值范围.
已知⊿ABC的顶点A(5,1),AB边上的中线CM所在的直线方程为2x-y-5=0,AC边上的高BH所在直线方程为,求:
(1)顶点C的坐标;
(2)直线BC的方程.
已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点.
(1)证明:AM⊥PM;
(2)求二面角P-AM-D的大小.
如图,在直三棱柱(侧棱垂直于底面的三棱柱)中,
,
分别是棱
上的点(点
不同于点
),且
为
的中点.
求证:(1)平面平面
;
(2)直线平面
.