如图甲所示,在水平桌面上固定着两根相距20cm、相互平行的无电阻轨道P和Q,轨道一端固定一根电阻为0.0l的导体棒a,轨道上横置一根质量为40g、电阻为0.0lΩ的金属棒b,两棒相距20cm.该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中.开始时,磁感应强度B0=0.10T(设棒与轨道间的最大静摩擦力和滑动摩擦力相等,g取10m/s2)
(1)若保持磁感应强度Bo的大小不变,从t=O时刻开始,给b棒施加一个水平向右的拉力,使它做匀加速直线运动.此拉力F的大小随时问t变化关系如图乙所示.求匀加速运动的加速度及b棒与导轨间的滑动摩擦力.
(2)若从某时刻t=0开始,按图丙中磁感应强度B随时间t变化图象所示的规律变化,求在金属棒b开始运动前,这个装置释放的热量是多少?
如图9-3-28甲所示,足够长的金属导轨MN和PQ与一阻值为R的电阻相连,平行地放在水平桌面上,质量为m的金属杆可以无摩擦地沿导轨运动.导轨与ab杆的电阻不计,导轨宽度为L,磁感应强度为B的匀强磁场垂直穿过整个导轨平面.现给金属杆ab一个初速度v0,使ab杆向右滑行.回答下列问题:
图9-3-28
(1)简述金属杆ab的运动状态,并在图乙中大致作出金属杆的v-t图象;
(2)求出回路的最大电流值Im并指出电流流向;
(3)当滑行过程中金属杆ab的速度变为v时,求杆ab的加速度a;
(4)电阻R上产生的最大热量Q.
如图9-3-22所示,宽0.5 m的导轨上放一电阻R0=0.1 Ω的导体棒,并用水平线通过定滑轮吊着质量M=0.2 kg的重物,轨道左端连接的电阻R=0.4 Ω,图中的l=0.8 m.竖直向上的匀强磁场的磁感应强度B=0.5 T,并且以在变化.水平导轨电阻不计,且不计摩擦阻力.求至少经过多长时间才能吊起重物?
图9-3-22
如图9-3-14所示,在磁感应强度为B的水平方向的匀强磁场中竖直放置两平行导轨,磁场方向与导轨所在平面垂直.导轨上端跨接一阻值为R的电阻(导轨电阻不计).两金属棒a和b的电阻均为R,质量分别为ma=2×10-2 kg和mb=1×10-2 kg,它们与导轨相连,并可沿导轨无摩擦滑动.闭合开关S,先固定b,用一恒力F向上拉a,稳定后a以v1="10" m/s的速度匀速运动,此时再释放b,b恰好保持静止,设导轨足够长,取g="10" m/s2.
图9-3-14
(1)求拉力F的大小;
(2)若将金属棒a固定,让金属棒b自由滑下(开关仍闭合),求b滑行的最大速度v2.
有一面积为100 cm2的金属环,电阻为0.1 Ω,环中磁场变化规律如下图所示,且磁场方向垂直于环面向里.在t1到t2这段时间内,环中流过的电荷量是多少?
如图所示,平行水平面放置的导轨上连有电阻R,处于垂直轨道平面的匀强磁场中.今从静止起用力拉金属棒ab,若拉力恒定,经过时间t1后ab速度为v,加速度为a1,最终速度可达2v;若改用功率恒定的拉力作用,经过时间t2后ab的速度也为v,加速度为a2,最终速度也可达2v.求a1∶a2的值.(导轨光滑,摩擦不计)