如图5所示,是自由落体的频闪照片。横线表示小球下落中每隔一个周期所到达的位置。已知频闪周期为0.042s,最下边是第六个位置,标明的数字是28.4,向上依次是19.6和12.5。请你根据这些信息,计算小球经过倒数第2条横线时的速度,以及运动中的加速度。(如果需要估算,重力加速度可取g=10m/s2)
如图3-5-8所示,cd、ef为光滑金属导轨,导轨平面与水平面成θ角,空间存在垂直导轨平面向下的匀强磁场.质量为m的金属棒ab搁在导轨上,构成一边长为l的正方形abed.ab棒的电阻为r,其余电阻不计,开始时磁感应强度为B0.
图3-5-8
(1)若从t=0时刻起,磁感应强度变化如图乙所示,同时保持ab棒静止,求棒中感应电流的大小和方向.
(2)在上述(1)过程中始终保持棒静止,当t="2" s时,需加垂直于棒的水平拉力为多大?
(3)若从t=0时刻起,磁感应强度由B0逐渐减小,同时棒以恒定速度v沿导轨向上运动,要使棒上无电流通过,磁感应强度应满足什么函数关系(B-t)?
如图3-5-22所示,MN、PQ为两根间距不均的金属导轨,水平放置在竖直向下的匀强磁场中,导轨的一端接阻值为10 Ω的电阻R1和电流表,另一端接阻值为5 Ω的电阻R2.质量为m="0.1" kg的金属棒放在导轨ab处,以初速度v0="8" m/s滑到导轨的a′b′处,历时t="0.08" s.导轨在ab处的间距L1="0.5" m,在a′b′处的间距L2="1.0" m.若金属棒滑动时始终与导轨接触良好,电流表的示数保持不变,不计棒与导轨间的摩擦以及其他电阻的影响.求:
图3-5-22
(1)金属棒在导轨a′b′处的速度;
(2)电流表的示数;
(3)匀强磁场的磁感应强度.
如图甲所示,一个足够长的U形金属管导轨NMPQ固定在水平面内,MN、PQ两导轨间的宽度为l="0.50" m.一根质量为m="0.50" kg的均匀金属棒ab横跨在导轨上且接触良好,abMP恰好围成一个正方形.该轨道平面处在磁感应强度大小可以调节、竖直向上的匀强磁场中.ab棒与导轨间的最大静摩擦力和滑动摩擦力均为Fm="1.0" N,ab棒的电阻为R="0.10" Ω,其他各部分电阻均不计.开始时,磁感应强度B0="0.50" T.
(1)若从某时刻(t=0)开始,调节磁感应强度的大小,使其以="0.20" T/s的变化率均匀增加,求经过多长时间ab棒开始滑动.此时通过ab棒的电流大小和方向如何?
(2)若保持磁感应强度B0的大小不变,从t=0时刻开始,给ab棒施加一个水平向右的拉力,使它以a="4.0" m/s2的加速度匀加速运动,推导出此拉力FT的大小随时间t变化的函数表达式,并在图乙所示的坐标图上作出拉力FT随时间t变化的FT-t图线.
如图甲所示,空间有一宽为2L的匀强磁场区域,磁感应强度为B,方向垂直纸面向外.abcd是由均匀电阻丝做成的边长为L的正方形线框,总电阻值为R.线框以垂直磁场边界的速度v匀速通过磁场区域.在运动过程中,线框ab、cd两边始终与磁场边界平行.设线框刚进入磁场的位置x=0,x轴沿水平方向向右.
在下面的乙图中,画出ab两端电势差Uab随距离变化的图象(其中U0=BLv).
甲
乙
如图所示,abcd为一个闭合矩形金属线框,图中虚线为磁场右边界(磁场的左边界很远),它与线圈的ab边平行,等分bc边,即线圈有一半位于匀强磁场之中,而另一半位于磁场之外,磁感线方向垂直于线框平面向里.线框以ab边为轴匀速转动,t=0时刻线圈的位置如图所示.在下面的坐标系中定性画出转动过程中线圈内感应电流随时间变化的图象(只要求画出一个周期).