如图,过椭圆的右焦点作一直线交椭圆
于
两点,且
到直线
的距离之和为
,求直线
的方程.
已知数集 具有性质 ;对任意的 , 与 两数中至少有一个属于 。
(Ⅰ)分别判断数集 与 是否具有性质 ,并说明理由;
(Ⅱ)证明: ,且
(Ⅲ)证明:当 时, 成等比数列。
已知双曲线 的离心率为 ,右准线方程为
(Ⅰ)求双曲线 的方程;
(Ⅱ)设直线 是圆 上动点 处的切线, 与双曲线 交于不同的两点 ,证明 的大小为定值。
设函数
(Ⅰ)求曲线 在点 处的切线方程;
(Ⅱ)求函数 的单调区间;
(Ⅲ)若函数 在区间 内单调递增,求 的取值范围。
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是 ,遇到红灯时停留的时间都是2min。
(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间 的分布列及期望。
如图,在三棱锥 中, 底面 ,点 , 分别在棱 上,且
(Ⅰ)求证: 平面 ;
(Ⅱ)当 为 的中点时,求 与平面 所成的角的大小;
(Ⅲ)是否存在点 使得二面角 为直二面角?并说明理由。