(本小题共14分)已知函数其中常数
.
(1)当时,求函数
的单调递增区间;
(2)当时,若函数
有三个不同的零点,求m的取值范围;
(3)设定义在D上的函数在点
处的切线方程为
当
时,若
在D内恒成立,则称P为函数
的“类对称点”,请你探究当
时,函数
是否存在“类对称点”,若存在,请最少求出一个“类对称点”的横坐标;若不存在,说明理由.
计算:
(1)
(2)已知,试计算:
.
(本小题满分14分)已知圆C的圆心在坐标原点O,且与直线相切.
(1)求直线被圆C所截得的弦AB的长;
(2)若与直线垂直的直线与圆C交于不同的两点P,Q,且以PQ为直径的圆过原点,求直线的纵截距;
(3)过点G(1,3)作两条与圆C相切的直线,切点分别为M,N,求直线MN的方程.
(本小题满分13分)已知函数,
集合,集合
.
(1)求集合对应区域的面积;
(2)若点,求
的取值范围.
(本小题满分12分)设的内角
的对边分别为
,若角
为锐角,且
.(1)求
的大小;(2)求
的取值范围.
(本小题满分12分)如图,等腰梯形ABCD的底边AB和CD长分别为6和,高为3.
(1)求这个等腰梯形的外接圆E的方程;
(2)若线段MN的端点N的坐标为(5,2),端点M在圆E上运动,求线段MN的中点P的轨迹方程.