(本小题满分13分)已知函数的反函数为,定义:若对给定的实数,函数与互为反函数,则称满足“和性质”.(1)判断函数是否满足“1和性质”,并说明理由;(2)若,其中满足“2和性质”,则是否存在实数a,使得对任意的恒成立?若存在,求出的范围;若不存在,请说明理由.
(本题10分)椭圆过点,离心率为,左、右焦点分别为,过的直线交椭圆于两点. (Ⅰ)求椭圆C的方程; (Ⅱ)当的面积为时,求直线的方程.
(本题10分)已知,若命题“ p且q”和“¬p”都为假,求的取值范围.
已知椭圆的离心率,过点和的直线与原点的距离为. (1)求椭圆的方程; (2)设为椭圆的左、右焦点,过作直线交椭圆于两点,求的内切圆半径的最大值.
已知函数,,. (1)求函数的极值; (2)若在上为单调函数,求的取值范围.
(原创)如图,已知是正三角形,,且的中点. (1)求证:; (2)求四棱锥的全面积.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号