(本小题满分12分)2010年广东亚运会,某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D两个动作,比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。假设每个运动员完成每个系列中的两个动作的得分是相互独立的,根据赛前训练统计数据,某运动员完成甲系列和乙系列的情况如下表:
甲系列:
动作 |
K |
D |
||
得分 |
100 |
80 |
40 |
10 |
概率 |
![]() |
![]() |
![]() |
![]() |
乙系列:
动作 |
K |
D |
||
得分 |
90 |
50 |
20 |
0 |
概率 |
![]() |
![]() |
![]() |
![]() |
现该运动员最后一个出场,其之前运动员的最高得分为118分。
(I) 若该运动员希望获得该项目的第一名,应选择哪个系列,说明理由,并求其获得第一名的概率;
(II) (II)若该运动员选择乙系列,求其成绩X的分布列及其数学期望EX。
.(本小题满分13分)
某高校2011年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[160,165),第2组[165,170),第3组[170,175),第4组[175,180),第5组[180,185)得到的频率分布直方图如图所示.
(1)求第3、4、5组的频率并估计这次考试成绩的众数
(2)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求:第4组至少有一名学生被甲考官面试的概率?
(坐标系与参数方程选做题)极坐标系中,直线l的极坐标方程为ρsin(θ+)=2,则极点在直线l上的射影的极坐标是__________.
(几何证明选讲选做题)如图所示,圆的内接△ABC的∠C的平分线CD
延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段
BE=.
.(本小题满分13分)
已知数列是其前
项和,且
.
(1)求数列的通项公式;
(2)设是数列
的前
项和
,求T10的值
(本小题满分12分)已知函数(
>0),若函数
的最小正周期为
.
(1)求的值,并求函数
的最大值
(2)若0<x<,当f(x)=
时,求
的值