求下列极限:
设椭圆E: (a,b>0)过M(2,
) ,N(
,1)两点,O为坐标原点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交A,B且?若存在,写出该圆的方程,若不存在说明理由。
双曲线的中心为原点,焦点在
轴上,两条渐近线分别为
,经过右焦点
垂直于
的直线分别交
于
两点.已知
成等差数列,且
与
同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设被双曲线所截得的线段的长为4,求双曲线的方程.
已知函数。
(I)求的最小值;
(II)若对所有都有
,求实数
的取值范围。
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角Q-BP-C的余弦值.
已知函数在点
处的切线方程为
.
⑴求函数的解析式;
⑵若对于区间上任意两个自变量的值
都有
,求实数
的最小值;