试判断下面的证明过程是否正确:用数学归纳法证明:证明:(1)当时,左边=1,右边=1∴当时命题成立.(2)假设当时命题成立,即则当时,需证由于左端等式是一个以1为首项,公差为3,项数为的等差数列的前项和,其和为∴式成立,即时,命题成立.根据(1)(2)可知,对一切,命题成立.
已知函数. (Ⅰ)求的定义域; (Ⅱ)若角在第一象限且,求.
化简:
已知函数,在时取得极值. (Ⅰ)求函数的解析式; (Ⅱ)若时,恒成立,求实数m的取值范围; (Ⅲ)若,是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.
在数列中,,且. (Ⅰ) 求,猜想的表达式,并加以证明; (Ⅱ) 设,求证:对任意的自然数,都有;
已知:,(1)求证: (2)求的最小值
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号