求与圆外切,且与直线
相切于点
的圆的方程.
(本小题满分12分)正方体的棱长为
,
是
与
的交点,
是
上一点,且
.
(1)求证:平面
; (2)求异面直线
与
所成角的余弦值;
(3)求直线与平面
所成角的正弦值.
(本小题满分12分)如图所示是某水产养殖场的养殖大网箱的平面图,四周的实线为网衣,为避免混养,用筛网(图中虚线)把大网箱隔成大小一样的小网箱。
(1)若大网箱的面积为108平方米,每个小网箱的长x,宽y设计为多少米时,才能使围成的网箱中筛网总长度最小;
(2)若大网箱的面积为160平方米,网衣的造价为112元/米,筛网的造价为96元/米,且大网箱的长与宽都不超过15米,则小网箱的长、宽为多少米量,可使总造价最低?
(本小题满分12分)已知等差数列的公差大于0,且
是方程
的两根,数列
的前n项的和为
,且
.
(1)求数列,
的通项公式;
(2) 记,求证:
.
(本小题满分12分)设函数f(x)=2在
处取最小值.
(1)求的值;
(2)在中,
分别是角A,B,C的对边,已知
,求角C.
已知圆:
.
⑴直线过点
,且与圆
交于
、
两点,若
,求直线
的方程;
⑵过圆上一动点
作平行于
轴的直线
,设
与
轴的交点为
,若向量
,求动点
的轨迹方程,并说明此轨迹是什么曲线.