已知点P(-2,-3)和以Q为圆心的圆(x-4)2+(y-2)2=9.
(1)画出以PQ为直径,Q′为圆心的圆,再求出它的方程.
(2)作出以Q为圆心的圆和以Q′为圆心的圆的两个交点A、B.直线PA、PB是以Q为圆心的圆的切线吗?为什么?
(3)求直线AB的方程.
(本小题满分12分)
如图,在底面为直角梯形的四棱锥中
,
平面
,
,
,
.
⑴求证:;
⑵求直线与平面
所成的角;
⑶设点在棱
上,
,若
∥平面
,求
的值.
(本小题满分12分)
已知数列满足
,
.
⑴求数列的通项公式;
⑵若数列满足
,求数列
的通项公式.
(本小题满分12分)
如图,在平面直角坐标系中,锐角和钝角
的终边分别与单位圆交于
,
两点.
⑴如果、
两点的纵坐标分别为
、
,求
和
;
⑵在⑴的条件下,求的值;
⑶已知点,求函数
的值域.
已知函数.
(Ⅰ)若,试讨论函数
的单调性;
(Ⅱ)设.如果对任意
,
,求
的取值范围.
已知椭圆两焦点分别为F1、F2、P是椭圆在第一象限弧上一点,并满足
,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点
(1)求P点坐标;
(2)求证直线AB的斜率为定值;
(3)求△PAB面积的最大值。