(本小题满分13分)已知函数(其中
,
是自然对数的底数,
).
(Ⅰ)当时,求函数
的极值;
(Ⅱ)若恒成立,求实数
的取值范围;
(Ⅲ)求证:对任意正整数,都有
.
(本小题满分13分)已知椭圆:
的焦距为
,且经过点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)是椭圆
与
轴正半轴的交点, 椭圆
上是否存在两点
、
,使得
是以A为直角顶点的等腰直角三角形?若存在,请说明有几个;若不存在,请说明理由.
(本小题满分13分)设各项均为正数的数列的前
项和为
,满足
且
恰好是等比数列
的前三项.
(Ⅰ)求数列、
的通项公式;
(Ⅱ)记数列的前
项和为
,若对任意的
,
恒成立,求实数
的取值范围.
(本小题满分12分)已知圆:
,直线
过定点
.
(Ⅰ)若与圆
相切,求
的方程;
(Ⅱ)若与圆
相交于
、
两点,求
的面积的最大值,并求此时直线
的方程.
(本小题满分12分)在中,角
所对的边分别为
,已知
,
(Ⅰ)求的大小;
(Ⅱ)若,求
的取值范围.