如图,圆柱的轴截面ABCD是正方形,点E在底面圆周上,点F在DE上,且AF⊥DE,若圆柱的底面积与△ABE的面积之比等于π。
(Ⅰ)求证:AF⊥BD;
(Ⅱ)求直线DE与平面ABCD所成角的正切值。
在△ABC中,角A,B,C所对的边分别为a,b,c,已知cos C+(cos A-sin A)cos B=0.
(1)求角B的大小;
(2)若a+c=1,求b的取值范围.
在△ABC中,角A,B,C对应的边分别是a,b,c.已知cos 2A-3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面积S=5,b=5,求sin Bsin C的值.
已知函数f(x)=Msin(ωx+φ)(M>0,ω>0,|φ|<)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a-c)cos B=bcos C,求f的取值范围.
已知函数f(x)=sin2x+sin xcos x,x∈
.
(1)求f(x) 的零点;
(2)求f(x)的最大值和最小值.
已知a=(sin α,1), b=(cos α,2),α∈.
(1)若a∥b,求tan α的值;
(2)若a·b=,求sin
的值.