圆柱形罐的直径为10cm,高为20cm,将两个直径为8cm的铁球放于罐中,
(1)求上面铁球球心到圆柱形罐顶的距离;
(2)若向罐中注水至刚好盖过上面的铁球,求需要多少水?
(本小题满分12分)
已知函数f(x)=lnx-,其中a为常数,且a>0.
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线y=x+1垂直,求函数f(x)的单调递减区间;
(2)若函数f(x)在区间[1,3]上的最小值为,求a的值.
(本小题满分12分)时下网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y(单位:千套)与销售价格x(单位:元/套)满足的关系式y=+4(x-6)2,其中2<x<6,m为常数.已知销售价格为4元/套时,每日可售出套题21千套.
(1)求m的值;
(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x的值,使网校每日销售套题所获得的利润最大.(保留1位小数)
(本小题满分12分)已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上有最大值4和最小值1.设f(x)=.
(1)求a、b的值;
(2)若不等式f(2x)-k·2x≥0在x∈[-1,1]上有解,求实数k的取值范围.
(本小题满分12分)如图是函数f(x)=x3-2x2+3a2x的导函数y=
的简图,它与x轴的交点是(1,0)和(3,0)
(1)求函数f(x)的极小值点和单调递减区间;
(2)求实数a的值.
(本小题满分12分)已知集合U=R,集合A={x|(x-2)(x-3)<0},函数y=lg的定义域为集合B.
(1)若a=,求集合A∩(∁UB);
(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.