如图正三棱柱,
,
,若
为棱
中点.
(Ⅰ)求证:∥平面
;
(Ⅱ)求与平面
所成的角正弦值.
设函数的最小值为a.
(Ⅰ)求a;
(Ⅱ)已知两个正数m,n满足,求
的最小值.
如图所示,已知与⊙
相切,
为切点,过点
的割线交圆于
两点,弦
,
相交于点
,
为
上一点,且
.
(Ⅰ)求证:;
(Ⅱ)若,求
的长.
(本小题满分12分)已知函数.
(Ⅰ)如果函数在
上单调递减,求
的取值范围;
(Ⅱ)当时,讨论函数
零点的个数.
(本小题满分12分)有20名学生参加某次考试,成绩(单位:分)的频率分布直方图如图所示:
(Ⅰ)求频率分布直方图中的值;
(Ⅱ)分别求出成绩落在中的学生人数;
(Ⅲ)从成绩在的学生中任选2人,求所选学生的成绩都落在
中的概率.
【原创】(本小题满分12分)在四棱锥中,底面
为菱形,
=
,平面
⊥平面
,
=
=
=2.
(Ⅰ)求证:⊥
;
(Ⅱ)求三棱锥的高.