如图所示,平面坐标系Oxy中,在y>0的区域存在沿y轴负方向的匀强电场,场强大小为E,在-h<y<0的区域Ⅰ中存在垂直纸面向外的匀强磁场,磁感应强度大小为B,在y<-h的区域Ⅱ中存在垂直纸面向里的匀强磁场,磁感应强度大小为2B.A是y轴上的一点, C是x轴上的一点.一质量为m、电荷量为q的带正电的粒子以某一初速度沿x轴正方向从A点进入电场区域,继而通过C点以速度方向与x轴夹角为φ=30°进入磁场区域Ⅰ,并以垂直边界y=-h的速度进入磁场区域Ⅱ.粒子重力不计.试求:(1)粒子经过C点时的速度大小v;
(2)A、C两点与O点间的距离y0、x0;
(3)粒子从A点出发,经过多长时间可回到y=y0处?
如图所示,质量均为m的带正电的物体A和不带电的物体B静止于绝缘水平面上,现加一水平向右的匀强电场后两物体一起开始向右运动。已知物体A与绝缘水平面间的动摩擦因数为μ,而电场力大小为摩擦力的1.5倍,假设B不受摩擦作用。经一段时间t1后,突然使电场方向反向,而场强大小不变,A、B随即分离。求:
(1)物体A、B一起运动时,A对B的弹力多大;
(2)从开始到A向右到达最远处经历的时间。
)2008北京奥运已顺利闭幕,我国获得了51块金牌,位居金牌榜首,这其中包含了多少运动员和教练员的心血。教练员在指导运动员进行训练时,经常采用“25米往返跑”来训练运动员的体能, “25米往返跑”的成绩反应了人体的灵敏素质。测定时,在平直跑道上,运动员以站立式起跑姿势站在起点终点线前,当听到“跑”的口令后,全力跑向正前方25米处的折返线,教练员同时开始计时。运动员到达折返线处时,用手触摸折返线处的物体(如木箱),再转身跑向起点终点线,当胸部到达起点终点线的垂直面时,教练员停表,所用时间即为“25米往返跑”的成绩。设某运动员起跑的加速度为4m/s2,运动过程中的最大速度为8m/s,快到达折返线处时需减速到零,减速的加速度为8m/s2,返回时达到最大速度后不需减速,保持最大速度冲线。求该运动员“25米往返跑”的成绩为多少秒?
如图所示,一质量为m的滑块从高为h的光滑圆弧形槽的顶端A处无初速度地滑下,槽的底端B与水平传送带相接,传送带的运行速度为v0,长为L,滑块滑到传送带上后做匀加速运动,滑到传送带右端C时,恰好被加速到与传送带的速度相同.求:
(1)滑块到达底端B时的速度v;
(2)滑块与传送带间的动摩擦因数;
(3)此过程中,由于克服摩擦力做功而产生的热量Q.
如图,与水平面成37°倾斜轨道AB,其沿长线在C点与半圆轨道CD(轨道半径R=1m)相切,全部轨道为绝缘材料制成且放在竖直面内。整个空间存在水平向左的匀强电场,MN的右侧存在垂直纸面向里的匀强磁场。一个质量为0.4kg的带电小球沿斜面下滑,至B点时速度为,接着沿直线BC(此处无轨道)运动到达C处进入半圆轨道,进入时无动能损失,且刚好到达D点,从D点飞出时磁场消失,不计空气阻力,g=10m/s2,cos37°=0.8,求:
(1)小球带何种电荷。
(2)小球离开D点后的运动轨迹与直线AC的交点距C点的距离。
(3)小球在半圆轨道部分克服摩擦力所做的功。
.如图所示,轻质细杆竖直位于相互垂直的光滑墙壁和光滑地板交界处,质量均为m的两个小球A与B固定在长度为L的轻质细杆两端,小球半径远小于杆长,小球A位于墙角处.若突然发生微小的扰动使杆沿同一竖直面无初速倒下,不计空气阻力,杆与竖直方向成角(
<arccos 2/3)时,求:
(1)球B的速度大小;
(2)球A对墙的弹力大小.