游客
题文

在五棱锥P—ABCDE中,PA=AB=AE=2a,PB=PE=2a,BC=DE=a,∠EAB=∠ABC=
∠DEA=90°.
(1)求证:PA⊥平面ABCDE;
(2)求二面角A—PD—E的余弦值.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题12分)如图,在长方体中,点在棱的延长线上,且下标

(1)求证:∥平面
(2)求证:平面平面
(3)求四面体的体积.

如图所示,流程图给出了无穷等差整数列时,输出的时,输出的(其中d为公差)
(I)求数列的通项公式
(II)是否存在最小的正数m,使得成立?若存在,求出m的值,若不存在,请说明理由。

已知点B(0,1),点C(0,—3),直线PB、PC都是圆的切线(P点不在y轴上)
(I)求过点P且焦点在x轴上抛物线的标准方程;
(II)过点(1,0)作直线与(I)中的抛物线相交于M、N两点,问是否存在定点R,使为常数?若存在,求出点R的坐标与常数;若不存在,请说明理由。

已知函数
(I)若,判断函数在定义域内的单调性
(II)若函数在内存在极值,求实数m的取值范围。

AB为圆O的直径,点E、F在圆上,AB//EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,BC=EF=1。
(I)求证:BF⊥平面DAF;
(II)求多面体ABCDFE的体积。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号