箱中有a个正品,b个次品,从箱中随机连续抽取3次,在以下两种抽样方式下:(1)每次抽样后不放回;(2)每次抽样后放回.求取出的3个全是正品的概率.
已知矩形中ABCD,,
(1)若,求
(2)求与
夹角的余弦值.
已知,不等式
的解集是
(Ⅰ)求a的值;
(Ⅱ)若 存在实数解,求实数
的取值范围。
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线 的参数方程为
(t为参数,
),曲线C的极坐标方程为
.
(Ⅰ)求曲线C的直角坐标方程。
(Ⅱ)设直线 与曲线C相交于A,B两点,当a变化时,求
的最小值
如图,圆O的直径AB= 10,P是AB延长线上一点,BP=2,割线PCD交圆O于点C、D,过点P作AP的垂线,交直线AC于点E,交直线AD于点F.
(Ⅰ)求证:PEC=
PDF
(Ⅱ)求PEPF的值
已知函数 的定义域是
,
是
的导函数,且
在
上恒成立
(Ⅰ)求函数 的单调区间。
(Ⅱ)若函数 ,求实数a的取值范围
(Ⅲ)设 是
的零点 ,
,求证:
.