为了解A,B两种轮胎的性能,某汽车制造厂分别从这两种轮胎中随机抽取了8个进行测试,下面列出了每一个轮胎行驶的最远里程数(单位:1 000 km)
轮胎A 96, 112, 97, 108, 100, 103, 86, 98
轮胎B 108, 101, 94, 105, 96, 93, 97, 106
(1)分别计算A,B两种轮胎行驶的最远里程的平均数,中位数;
(2)分别计算A,B两种轮胎行驶的最远里程的极差、标准差;
(3)根据以上数据你认为哪种型号的轮胎性能更加稳定?
(本小题满分10分)选修4—4:坐标系与参数方程
以直角坐标系的原点为极点,
轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(4,
),若直线
过点P,且倾斜角为
,圆C以M为圆心,4为半径。
(1)求直线的参数方程和圆C的极坐标方程。
(2)试判定直线与圆C的位置关系。
(本小题满分10分)选修4-1:几何证明选讲
如图,的角平分线
的延长线交它的外接圆于点
(Ⅰ)证明:∽△
;
(Ⅱ)若的面积
,求
的大小.
(本小题满分12分)已知函数.
(1)求在区间[-2,1]上的最大值;
(2)若过点P(1,t)存在3条直线与曲线相切,求t的取值范围;
(3)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线相切?(只需写出结论)
(本小题满分12分)已知函数=
,其中a∈R,且曲线y=
在点(
,
)处的切线垂直于直线
.
(1)求的值;
(2)求函数的单调区间与极值.
(本小题满分12分)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cos A=,B=A+
.
(1)求b的值;
(2)求△ABC的面积.