一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有
缺点零件的多少,随机器运转的速度而变化,下表为抽样试验结果:
转速x(转/秒) |
16 |
14 |
12 |
8 |
每小时生产有缺 点的零件数y(件) |
11 |
9 |
8 |
5 |
(1)对变量y与x进行相关性检验;
(2)如果y与x有线性相关关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器的运转速度应控制在什么范围内?
已知
为半圆
(
为参数,
)上的点,点
的坐标为(1,0),
为坐标原点,点
在射线
上,线段
与
的弧
的长度均为
.
(Ⅰ)以
为极点,
轴的正半轴为极轴建立极坐标系,求点
的坐标;
(Ⅱ)求直线
的参数方程
设
,
分别为椭圆
的左右焦点,过
的直线
与椭圆
相交于
,
两点,直线
的倾斜角为
,
到直线
的距离为
.
(Ⅰ)求椭圆
的焦距;
(Ⅱ)如果
,求椭圆
的方程。
为了比较注射
两种药物后产生的皮肤疱疹的面积,选200只家兔做实验,将这200只家兔随即地分成两组。每组100只,其中一组注射药物
,另一组注射药物
.下表1和表2分别是注射药物A和药物B后的实验结果。(疱疹面积单位:
)
表1:注射药物
后皮肤疱疹面积的频数分布表
表2:注射药物 后皮肤疱疹面积的频数分布表
(Ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;
(Ⅱ)完成下面
列联表,并回答能否有99.9%的把握认为"注射药物
后的疱疹面积与注射药物
后的疱疹面积有差异".
表3:
在
中,
分别为内角
的对边,且
.
(Ⅰ)求
的大小;
(Ⅱ)若
,是判断
的形状.
如图,棱柱
的侧面
是菱形,
.
(Ⅰ)证明:平面
平面
;
(Ⅱ)设
是
上的点,且
平面
,求