已知点直线
相交于点M,且
.
(1)求点的轨迹
的方程;
(2)过定点作直线
与曲线
交于
两点,
的面积是否存在最大值,若存在,求出
面积的最大值,若不存在,请说明理由.
已知函数,其中a∈R
(1)若函数在
单调递增,求实数
的取值范围
(2) 若曲线y=f(x)在点(1,f(1))处的切线垂直于y轴,求函数f(x)的单调区间与极值.
某厂采用新技术改造后生产甲产品过程中记录的产量x(吨)与相应的成本y(万元)的几组对照数据.
x |
3 |
4 |
5 |
6 |
y |
3 |
3.5 |
4.5 |
5 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=
x+
;
(3)已知该厂技改前生产50吨甲产品的生产成本为40万元.试根据(2)求出的线性回归方程,预测生产50吨甲产品的生产成本比技改前降低多少万元?
(参考数据:,
)
设关于的一元二次方程
.
(1)若是从
四个数中任取的一个数,
是从
三个数中任取的一个数,求上述方程有两个不等实根的概率.
(2)若是从区间
任取的一个数,
是从区间
任取的一个数,求上述方程有实根的概率.
设函数
(1)求函数的最小值;
(2)设,讨论函数
的单调性;
(3)在第二问的基础上,若方程,(
)有两个不相等的实数根
,求证:
.