分别指出由下列命题构成的“pq”、“p
q”、“
p”形式的命题的真假.
(1)p:3是9的约数,q:3是18的约数;
(2)p:菱形的对角线相等,q:菱形的对角线互相垂直;
(3)p:方程x2+x-1=0的两实根符号相同,
q:方程x2+x-1=0的两实根绝对值相等.
(4)p:是有理数,q:
是无理数.
|
已知函数,
,
设数列{}的前n项和为
,若
(t为正常数,n=2,3,4…).
(1)求证:{}为等比数列;(2)设{
}公比为
,作数列
使
,试求
,并求
为赢的2010年上海世博会的制高点,某商家最近进行了新科技产品的市场分析,调查显示,新产品每件成本9万元,售价为30万元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,
)的平方成正比,已知商品单价降低2万元时,一星期多卖出24件.
(1)将一个星期的商品销售利润表示成的函数;
(2)如何定价才能使一个星期的商品销售利润最大?
设数列的前
项和为
,且
;数列
为等差数列,且
。
(1)求数列的通项公式;
(2)若为数列
的前
项和,求证:
。