某商品的市场需求量y1(万件)、市场供应量y2(万件)与市场价格x(元/件)分别近似地满足下列关系:y1=-x+70,y2=2x-20.当y1=y2时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量.
(1)求平衡价格和平衡需求量;
(2)若要使平衡需求量增加4万件,政府对每件商品应给予多少元补贴?
设,
,
.
(1)求;
(2)记(
)的最小值为
.
①求;
②若为奇数,求
.
抛物线的准线
过双曲线
的一个焦点.
(1)求抛物线C的方程;
(2)设M为抛物线C上任意一点.
①设,求
到
与
距离之和的最小值;
②以M为切点的抛物线的切线与
交于点N,试问
轴上是否存在定点Q,使Q在以MN为直径的
圆上.若存在,求出点Q坐标,若不存在,说明理由.
有一种密码,明文由三个字母组成,密码由明文的这三个字母对应的五个数字组成.编码规则如下表.明文由表中每一排取一个字母组成,且第一排取的字母放在第一位,第二排取的字母放在第二位,第三排取的字母放在第三位,对应的密码由明文所取的三个字母对应的数字按相同的次序排成一组组成.(如:明文取的三个字母为AFP,则与它对应的五个数字(密码)就为11223)
第一排 |
明文字母 |
A |
B |
C |
密码数字 |
11 |
12 |
13 |
|
第二排 |
明文字母 |
E |
F |
G |
密码数字 |
21 |
22 |
23 |
|
第三排 |
明文字母 |
M |
N |
P |
密码数字 |
1 |
2 |
3 |
(1)假设密码是11211,求这个密码对应的明文;
(2)设随机变量表示密码中所含不同数字的个数.
①求;②求随机变量
的分布列和数学期望.
盒中共有9个球,其中4个红球,3个黄球,2个绿球,这些球除颜色外全相同.
(1)从盒中一次取2个球,求这2个球颜色相同的概率;
(2)每次随机取一球,取后放回,共取了3次,求三次取到球颜色不全相同的概率;
(3)从盒中一次取4个球,其中红、黄、绿个数分别为,随机变量X表示
中最大与最小数的差,求X的分布列.
(本小题满分12分)已知定义域为的函数
同时满足以下三个条件:
①对任意的,总有
;
②;
③若且
,则有
成立,则称
为“友谊函数”.
(Ⅰ)若已知为“友谊函数”,求
的值;
(Ⅱ)函数在区间
上是否为“友谊函数”?并给出理由;
(Ⅲ)已知为“友谊函数”,且
,求证:
.