(选修4-4:坐标系与参数方程)
在极坐标系中,圆是以点
为圆心,
为半径的圆.
(1)求圆的极坐标方程;
(2)求圆被直线
所截得的弦长.
(选修4-2:矩阵与变换)
已知,求矩阵
.
(选修4-1:几何证明选讲)
如图,AD是∠BAC的平分线,圆O过点A且与边BC相切于点D,与边AB、AC分别交于点E、F,求证:EF∥BC.
(本小题满分16分)设函数有且仅有两个极值点
.
(1)求实数的取值范围;
(2)是否存在实数满足
?如存在,求
的极大值;如不存在,请说明理由.
(本小题满分16分)
已知数列是等差数列,
是等比数列,且满足
,
.
(1)若,
.
①当时,求数列
和
的通项公式;
②若数列是唯一的,求
的值;
(2)若,
,
均为正整数,且成等比数列,求数列
的公差
的最大值.