求下列函数的值域:
(1)y=;
(2)y=sinx+cosx+sinxcosx;
(3)y=2cos+2cosx.
已知函数f(x)=2sin(2ωx+φ)(ω>0,φ∈(0,π))的图象中相邻两条对称轴间的距离为
,且点
是它的一个对称中心.
(1)求f(x)的表达式;
(2)若f(ax)(a>0)在上是单调递减函数,求a的最大值.
已知函数f(x)=2sin xcos x+2cos2x-
,x∈R.
(1)求函数f(x)的最小正周期;
(2)在锐角△ABC中,若f(A)=1,·
=
,求△ABC的面积.
设函数f(x)=+2cos2x.
(1)求f(x)的最大值,并写出使f(x)取最大值时x的集合;
(2)已知△ABC中,角A,B,C的对边分别为a,b,c,若f(B+C)=,b+c=2,求a的最小值.
已知函数f(x)=2cos2-
sin x.
(1)求函数f(x)的最小正周期和值域;
(2)若α为第二象限角,且f=
,求
的值.
在△ABC中,角A,B,C的对边分别为a,b,c,若acos2+ccos2
=
b.
(1)求证:a,b,c成等差数列;
(2)若∠B=60°,b=4,求△ABC的面积.