设a>0,函数f(x)=,b为常数.
(1)证明:函数f(x)的极大值点和极小值点各有一个;
(2)若函数f(x)的极大值为1,极小值为-1,试求a的值.
(本小题满分12分)已知向量。
(1)若,求
的值;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,且满足
,
求函数的取值范围。
(本小题满分14分)各项为正数的数列的前
项和为
,且满足:
(1)求
;
(2)设函数,求数列
的前
项和
;
(3)设为实数,对满足
的任意正整数
、
、
,不等式
恒成立,求实数的最大值。
.(本小题满分13分)已知函数
(1)试确定的取值范围,使得函数
在
上为单调函数;
(2)当时,判断
的大小,并说明理由;
(3)求证:当时,关于
的方程
在区间
上,总有两个不同的解。
(本小题满分12分)设椭圆的焦点分别为
,
直线交
轴于于点A,且
。
(1)试求椭圆的方程;
(2)过、
分别作互相垂直的两直线与椭圆分别
交于D、E、M、N四点(如图所示),若四边形
DMEN的面积为,求DE的直线方程。
(本小题满分12分)如图所示,正方形ABCD与直角梯形ADEF所
在平面互相垂直,∠ADE=90°,AF∥DE,DE=DA=2AF=2。
(1)求证:AC∥平面BEF;
(2)求四面体BDEF的体积。