设数列{an}是等差数列,a5=6.
(1)当a3=3时,请在数列{an}中找一项am,使得a3,a5,am成等比数列;
(2)当a3=2时,若自然数n1,n2,…,nt,… (t∈N*)满足5<n1<n2<…<nt<…使得a3,a5,,
,…,
,…是等比数列,求数列{nt}的通项公式.
(本小题满分12分)
如图,四棱椎P-ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=1,PD与平面ABCD所成的角是300,点F是PB的中点,点E在边BC上移动。
(1)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)证明:无论点E在边BC的何处,都有AF⊥PE;
(3)求当BE的长为多少时,二面角P-DE-A的大小为450。
(本小题满分12分)
在数列中,已知
且
。
(1)记证明:数列
是等差数列,并求数列
的通项公式;
(2)设求
的值。
(本小题满分12分)
在一个盒子中,放有标号分别为1,2,3的三张卡片,先从这个盒子中有放回地先后抽取两张卡片,设这两张卡片的号码分别为为坐标原点,
记
(1)求随机变量的最大值,并求事件“
取最大值”的概率;
(2)求的分布
列及数学期望。
(本小题满分10分)
已知函数
且函数
的最小正周期为
;
(1)求函数的解析式;
(2)在中,角
所对的边分别为
若
且
求
的值。
已知圆C1的方程为,椭圆C2的方程为
,C2的离心率为
,如果C1与C2相交于A、B两点,且线段AB恰为圆C1的直径,求直线A
B的
方程和椭圆C2的方程.