已知f(x)=logax(a>0且a≠1),设f(a1),f(a2),…,f(an) (n∈N*)是首项为4,公差为2的等差数列.
(1)设a为常数,求证:{an}成等比数列;
(2)若bn=anf(an),{bn}的前n项和是Sn,当a=时,求Sn.
如图,已知四棱锥的底面为菱形,
,
,
.
(1)求证:;
(2)求二面角的余弦值.
一个盒子里装有三张卡片,分别标记有数字,
,
,这三张卡片除标记的数字外完全相同。随机有放回地抽取
次,每次抽取
张,将抽取的卡片上的数字依次记为
,
,
.
(1)求“抽取的卡片上的数字满足”的概率;
(2)求“抽取的卡片上的数字,
,
不完全相同”的概率.
已知空间中三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设a=,b=
.
(1)求向量a与向量b的夹角的余弦值;
(2)若ka+b与ka-2b互相垂直,求实数k的值
设函数
的值域为
,
:
对
恒成立,若
为假,
为真,求实数
的取值范围。
已知函数(
).
(1)求函数的单调区间;
(2)函数在定义域内存在零点,求
的取值范围.
(3)若,当
时,不等式
恒成立,求
的取值范围