(本小题满分13分)设中的内角
,
,
所对的边长分别为
,
,
,且
,
.
(Ⅰ)当时,求角
的度数;
(Ⅱ)求面积的最大值.
(本小题满分13分)定义为有限项数列
的波动强度.
(Ⅰ)当时,求
;
(Ⅱ)若数列满足
,求证:
;
(Ⅲ)设各项均不相等,且交换数列
中任何相邻两项的位置,都会使数列的波动强度增加,求证:数列
一定是递增数列或递减数列.
(本小题共13分)已知,
或1,
,对于
,
表示U和V中相对应的元素不同的个数.
(Ⅰ)令,存在m个
,使得
,写出m的值;
(Ⅱ)令,若
,求证:
;
(Ⅲ)令,若
,求所有
之和.
(本小题共14分) 已知点,
,动点P满足
,记动点P的轨迹为W.
(Ⅰ)求W的方程;
(Ⅱ)直线与曲线W交于不同的两点C,D,若存在点
,使得
成立,求实数m的取值范围.
(本小题共13分)已知函数,
为函数
的导函数.
(Ⅰ)设函数f(x)的图象与x轴交点为A,曲线y=f(x)在A点处的切线方程是,求
的值;
(Ⅱ)若函数,求函数
的单调区间.