如图2-4,已知PA⊥矩形ABCD所在平面,M、N、E分别为AB、PC、PD的中点,当∠PDA为多少度时,MN⊥平面PCD?
图2-4
已知函数
(I)求函数的最小值和最小正周期;
(II)已知△ABC内角A,B,C的对边分别为a,b,c,且,若向量
共线,求a,b的值。
已知数列满足:
,
。
(I)求证:数列是等比数列(要求指出首项与公比);
(II)求数列的前n项和
。
(本小题14分)如图所示,L是海面上一条南北方向的海防警戒线,在L上点A处有一个水声监测点,另两个监测点B,C分别在A的正东方20 km处和54 km处.某时刻,监测点B收到发自静止目标P的一个声波,8s后监测点A,20 s后监测点C相继收到这一信号.在当时气象条件下,声波在水中的传播速度是1. 5 km/s.
(1)设A到P的距离为km,用
分别表示B、C到P 的距离,并求
值;
(2)求静止目标P到海防警戒线L的距离(结果精确到0.01 km)
(本小题14分)在等差数列中,
,前
项和
满足条件
,
(1)求数列的通项公式和
;
(2)记,求数列
的前
项和
(本小题14分)某工厂要制造A种电子装置41台,B种电子装置66台,需用薄钢板给每台装置配一个外壳,已知薄钢板的面积有两种规格:甲种薄钢板每张面积2㎡,可做A、B的外壳分别为2个和7个,乙种薄钢板每张面积5㎡,可做A、B的外壳分别为7个和9个,求两种薄钢板各用多少张,才能使总的用料面积最小?