某科研部门现有男技术员45人,女技术员15人,为研发某新产品的需要,科研部门按照分层抽样的方法组建了一个由四人组成的新产品研发小组.
(1)求每一个技术员被抽到的概率及该新产品研发小组中男、女技术员的人数;
(2)一年后研发小组决定选两名研发的技术员对该项研发产品进行检验,方法是先从研发小组中选一人进行检验,该技术员检验结束后,再从研发小组内剩下的三名技术员中选一人进行检验,若两名技术员检验得到的数据如下:
第一次被抽到进行检验的技术员 |
58 |
53 |
87 |
62 |
78 |
70 |
82 |
第二次被抽到进行检验的技术员 |
64 |
61 |
78 |
66 |
74 |
71 |
76 |
①求先后被选出的两名技术员中恰有一名女技术员的概率;
②请问哪位技术员检验更稳定?并说明理由.
.在中,
分别是角
的对边,向量
,
,且
.
(1)求角的大小;
(2)设,且
的最小正周期为
,求
在区间
上的最大值和最小值.
(本小题满分16分)
已知数列满足
.
(1)求数列的通项公式;
(2)对任意给定的,是否存在
(
)使
成等差数列?若存在,用
分别表示
和
(只要写出一组);若不存在,请说明理由;
(3)证明:存在无穷多个三边成等比数列且互不相似的三角形,其边长为.
(本小题满分16分)
设定义在区间[x1,x2]上的函数y=f(x)的图象为C,M是C上的任意一点,O为坐标原点,设向量=
,
,
=(x,y),当实数λ满足x=λ x1+(1-λ) x2时,记向量
=λ
+(1-λ)
.定义“函数y=f(x)在区间[x1,x2]上可在标准k下线性近似”是指“
k恒成立”,其中k是一个确定的正数
(1)设函数 f(x)=x2在区间[0,1]上可在标准k下线性近似,求k的取值范围;
(2)求证:函数在区间
上可在标准k=
下线性近似.
(参考数据:e=2.718,ln(e-1)=0.541)
(本小题满分16分)
如图,实线部分的月牙形公园是由圆P上的一段优弧和圆Q上的一段劣弧围成,圆P和圆Q的半径都是2km,点P在圆Q上,现要在公园内建一块顶点都在圆P上的多边形活动场地.
(1)如图甲,要建的活动场地为△RST,求场地的最大面积;
(2)如图乙,要建的活动场地为等腰梯形ABCD,求场地的最大面积.