已知椭圆的离心率为
,定点
,椭圆短轴的端点是
、
,且
.
(1)求椭圆两焦点与点构成三角形的面积;
(2)设过点且斜率不为
的直线交椭圆
于
,
两点.试问
轴上是否存在定点
,使
平分
?若存在,求出点
的坐标;若不存在,说明理由.
直平行六面体的底面为菱形,过不相邻两条侧棱的截面面积分别为Q1、Q2,求它的侧面积.
一个正三棱台的上、下底面边长分别是3 cm和6 cm,高是cm.(1)求三棱台的斜高;(2)求三棱台的侧面积与表面积.
正三棱柱ABC—A1B1C1的底面正△ABC的外接圆半径为,它的侧棱长为8,求正三棱柱的侧面积.
如图所示棱锥P—ABCD中,底面ABCD是正方形,边长为a,PD=a,PA=PC=,且PD是四棱锥的高.
(1)在这个四棱锥中放入一个球,求球的最大半径;
(2)求四棱锥外接球的半径.
在球内有相距1 cm的两个平行截面,截面面积分别是5π cm2和8π cm2,球心不在截面之间,求球面的面积.