市体校准备挑选一名跳高运动员参加全市中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛.他们的成绩(单位:m)如下:
甲:1.70 1.65 1.68 1.69 1.72 1.73 1.68 1.67
乙:1.60 1.73 1.72 1.61 1.62 1.71 1.70 1.75
(1)甲、乙两名运动员的跳高平均成绩分别是多少?
(2)哪位运动员的成绩更为稳定?
(3)若预测,跳过1.65m就很可能获得冠军,该校为了获得冠军,可能选哪位运动员参赛?若预测跳过1.70m才能得冠军呢?
在直三棱柱ABC-A1B1C1中,∠ABC="90°," AB="BC=1."
(1)求异面直线B1C1与AC所成角的大小;
(2)若直线A1C与平面ABC所成角为45°,
求三棱锥A1-ABC的体积.
已知点集,其中
,
,点列
在L中,
为L与y轴的交点,等差数列
的公差为1,
。
(1)求数列的通项公式;
(2)若=
,令
;试用解析式写出
关于
的函数。
(3)若=
,给定常数m(
),是否存在
,使得
,若存在,求出
的值;若不存在,请说明理由。
在四棱锥中,
,
,
底面
,
为
的中点,
.
(Ⅰ)求四棱锥的体积
;
(Ⅱ) 求二面角的大小.
某超市为了响应环保要求,鼓励顾客自带购物袋到超市购物,采取了如下措施:对不使用超市塑料购物袋的顾客,超市给予0.96折优惠;对需要超市塑料购物袋的顾客,既要付购买费,也不享受折扣优惠.假设该超市在某个时段内购物的人数为36人,其中有12位顾客自己带了购物袋,现从这36人中随机抽取2人.
(Ⅰ)求这2人都享受折扣优惠或都不享受折扣优惠的概率;
(Ⅱ)设这2人中享受折扣优惠的人数为,求
的分布列和数学期望.
在
上定义运算
(
、
为实常数)。记
,
,
。令
。
(Ⅰ)如果函数
在
处有极值
,试确定
、
的值;
(Ⅱ)求曲线
上斜率为
的切线与该曲线的公共点;
(Ⅲ)记
的最大值为
,若
对任意的
、
恒成立,试示
的最大值。