抛物线的准线的方程为,该抛物线上的每个点到准线的距离都与到定点的距离相等,圆是以为圆心,同时与直线和相切的圆,(Ⅰ)求定点的坐标;(Ⅱ)是否存在一条直线同时满足下列条件:①分别与直线和交于、两点,且中点为;②被圆截得的弦长为2.
设是方程的两个实根,则的最小值是多少?
已知,若求的范围。
已知函数.设数列满足,,数列满足,. (Ⅰ)用数学归纳法证明;(Ⅱ)证明.
已知抛物线的焦点为是抛物线上横坐标为,且位于轴上方的点,到抛物线准线的距离等于.过作垂直于轴,垂足为,的中点为. (1)求抛物线方程; (2)过作,垂足为,求点的坐标; (3)以为圆心,为半径作圆.当是轴上一动点 时,讨论直线与圆的位置关系.
已知双曲线,若的上支顶点为,且上支与直线交于点,以为焦点,为顶点,开口向下的抛物线通过点,当的斜率在区间上变化时,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号