过点T(2,0)的直线交抛物线y2=4x于A、B两点.
(I)若直线l交y轴于点M,且当m变化时,求
的值;
(II)设A、B在直线上的射影为D、E,连结AE、BD相交于一点N,则当m变化时,点N为定点的充要条件是n=-2.
如图,已知四棱锥的底面
是正方形,侧棱
底面
,
,
是
的中点.
(1)证明平面
;
(2)求二面角的余弦值.
已知等差数列满足:
.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求数列
的前
项和
.
(本小题满分12分)如图,在平面直角坐标系中,点
在单位圆
上,
,且
.
(1)若,求
的值;
(2)若也是单位圆
上的点,且
.过点
分别做
轴的垂线,垂足为
,记
的面积为
,
的面积为
.设
,求函数
的最大值.
(本小题满分12分)已知,
,且
(1)求函数的解析式;
(2)当时,
的最小值是
,求此时函数
的最大值,并求出函数
取得最大值时自变量
的值
(本小题满分12分)从某学校高三年级共800名男生中随机抽取50名测量身高,据测量被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组、第二组
;…第八组
,下图是按上述分组方法得到的频率分布直方图的一部分,已知第六组比第七组多1人,第一组和第八组人数相同.
(Ⅰ)求第六组、第七组的频率并补充完整频率分布直方图;
(Ⅱ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,求满足
的事件概率;