根据空气质量指数(为整数)的不同,可将空气质量分级如下表:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
空气质量级别 |
一级 |
二级 |
三级 |
四级 |
五级 |
六级 |
空气质量类别 |
优 |
良 |
轻度污染 |
中度污染 |
重度污染 |
严重污染 |
空气质量类别颜色 |
绿色 |
黄色 |
橙色 |
红色 |
紫色 |
褐红色 |
某市2013年10月1日—10月30日,对空气质量指数进行监测,获得数据后得到如图的条形图:
(1)估计该城市本月(按30天计)空气质量类别为中度污染的概率;
(2)在上述30个监测数据中任取2个,设为空气质量类别颜色为紫色的天数,求
的分布列.
在中,角
、
、
的对边分别为
、
、
,且
,
.
(1)求的值;
(2)设函数,求
的值.
已知等差数列的首项
,公差
,且其第二项、第五项、第十四项分别是等比数列
的第二、三、四项.
(1)求数列与
的通项公式;
(2)令数列满足:
=
,求数列
的前101项之和
;
(3)设数列对任意
,均有
+
+ +
=
成立,求
的值.
如图,边长为2的正方形所在的平面与平面
垂直,
与
的交点为
,
,且
.
(1)求证:平面
;
(2)求直线与平面
所成线面角的正切值.
在中,角
为锐角,已知内角
、
、
所对的边分别为
、
、
,向量
且向量
共线.
(1)求角的大小;
(2)如果,且
,求
的值.