游客
题文

(本小题满分13分)已知函数,.
(Ⅰ) 求函数在点(1,)处的切线方程;  (Ⅱ) 若函数在区间上均为增函数,求的取值范围;  (Ⅲ) 若方程有唯一解,试求实数的值.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

选修4—1:几何证明选讲
如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.

(Ⅰ)证明:DB=DC;
(Ⅱ)设圆的半径为1,,延长CE交AB于点F,求△BCF外接圆的半径.

已知函数,其中.
(1)当a=3,b=-1时,求函数的最小值;
(2)当a>0,且a为常数时,若函数对任意的,总有成立,试用a表示出b的取值范围.

已知椭圆C:过点,且椭圆C的离心率为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若动点P在直线上,过P作直线交椭圆C于M,N两点,且P为线段MN中点,再过P作直线.证明:直线恒过定点,并求出该定点的坐标.

如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.

(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)设FC的中点为M,求证:OM∥平面DAF;
(Ⅲ)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为,求.

某高校在2012年的自主招生考试中随机抽取了100名学生的笔试成绩,按成绩分组:第一组[160,165),第二组[165,170),第三组[170,175),第四组[175,180),第五组[180,185)得到的频率分布直方图如图所示.

(1)求第三、四、五组的频率;
(2)为了以选拔出最优秀的学生,学校决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.
(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第四组至少有一名学生被甲考官面试的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号