图(1)是某圆拱形桥一孔圆拱的示意图.这个圆的圆拱跨度m,拱高
m,建造时每间隔4m需要用一根支柱支撑,求支柱
的高度(精确到
m).
![]() |
仔细阅读下面问题的解法:
设A=[0,1],若不等式21-x-a>0在A上有解,求实数a的取值范围。
解:由已知可得 a<21-x
令f(x)=21-x,∵不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值.
又f(x)在[0,1]上单调递减,f(x)max ="f(0)=2." ∴实数a的取值范围为a<2.
研究学习以上问题的解法,请解决下面的问题:
(1)已知函数f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=,x∈A,试判断g(x)的单调性(写明理由,不必证明);
(3)若B={x|>2x+a–5},且对于(1)中的A,A∩B≠F,求实数a的取值范围。
已知函数
(1)求的定义域;
(2)在函数的图象上是否存在不同的两点,使过这两点的直线平行于
轴;
(3)当满足什么条件时,
在
上恒取正值.
已知函数
(1)求的反函数
;2)若
,求
的值.
已知集合,集合
,
集合,求
,
,
设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范围;
(2)指出S1、S2、…、S12中哪一个值最大,并说明理由.