八个人排成一纵队,甲在乙的前面(可以与乙不相邻),乙在丙的前面(可以与丙不相邻),则这样的排法共有____________种(用数字作答).
已知是数列{
}的前
项和,且满足
则数列{
}通项公式
.
在中,角A、B、C所对的边分别为
,若
,则角B的大小为.
已知两个正数,可按规则
扩充为一个新数
,在
三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作.若
,经过6次操作后扩充所得的数为
(
为正整数),则
的值为▲.
甲、乙、丙三人站在共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数为___▲ .
数学与文学之间存在着许多奇妙的联系. 诗中有回文诗,如:“云边月影沙边雁,水外天光山外树”,倒过来读,便是“树外山光天外水,雁边沙影月边云”,其意境和韵味读来真是一种享受!数学中也有回文数,如:88,454,7337,43534等都是回文数,无论从左往右读,还是从右往左读,都是同一个数,称这样的数为“回文数”,读起来还真有趣!
二位的回文数有11,22,33,44,55,66,77,88,99,共9个;
三位的回文数有101,111,121,131,…,969,979,989,999,共90个;
四位的回文数有1001,1111,1221,…,9669,9779,9889,9999,共90个;
由此推测:10位的回文数总共有__▲ 个.