已知函数
且导数
.
(Ⅰ)试用含有的式子表示
,并求
单调区间; (II)对于函数图象上的不同两点
,如果在函数图象上存在点
(其中
)使得点
处的切线
,则称
存在“伴侣切线”.特别地,当
时,又称
存在“中值伴侣切线”.试问:在函数
上是否存在两点
、
使得它存在“中值伴侣切线”,若存在,求出
、
的坐标,若不存在,说明理由.
在中,角
、
、
的对边分别为
、
、
.设向量
,
.
(1)若,
,求角
;(2)若
,
,求
的值.
已知动直线与椭圆
交于
、
两不同点,且△
的面积
=
,其中
为坐标原点.
(1)证明和
均为定值;
(2)设线段的中点为
,求
的最大值;
(3)椭圆上是否存在点
,使得
?若存在,判断△
的形状;若不存在,请说明理由.
已知图像过点
,且在
处的切线方程是
.
(1)求的解析式;
(2)求在区间
上的最大值和最小值.
已知椭圆的离心率为
,直线
与圆
相切.
(1)求椭圆的方程;
(2)设直线与椭圆
的交点为
,求弦长
.
设命题:实数
满足
,其中
;命题
:实数
满足
.
(1)若,且
为真,求实数
的取值范围;
(2)若是
成立的必要不充分条件,求实数
的取值范围.