已知菱形的边长为2,对角线
与
交于点
,且
,
为
的中点.将此菱形沿对角线
折成直二面角
.
(I)求证:;
(II)求直线与面
所成角的余弦值大小.
在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇的只数.
(Ⅰ)写出ξ的分布列(不要求写出计算过程);
(Ⅱ)求数学期望Eξ;
(Ⅲ)求概率P(ξ≥Eξ).
某条公共汽车线路沿线共有11个车站(包括起点站和终点站),在起点站开出的一辆公共汽车上有6位乘客,假设每位乘客在起点站之外的各个车站下车是等可能的.求:
(I)这6位乘客在其不相同的车站下车的概率;
(II)这6位乘客中恰有3人在终点站下车的概率;
设有关于的一元二次方程
.
(Ⅰ)若是从
四个数中任取的一个数,
是从
三个数中任取的一个数,求上述方程有实根的概率.
(Ⅱ)若是从区间
任取的一个数,
是从区间
任取的一个数,求上述方程有实根的概率.
某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.
(I)任选1名下岗人员,求该人参加过培训的概率;
(II)任选3名下岗人员,记为3人中参加过培训的人数,求
的分布列和期望.
某气象站天气预报的准确率为,计算(结果保留到小数点后面第2位)
(1)5次预报中恰有2次准确的概率;
(2)5次预报中至少有2次准确的概率;