【原创】甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为
,各局比赛结果相互独立.
(1)求甲在4局以内(含4局)赢得比赛的概率;
(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).
如图,四棱锥的底面是正方形,侧棱
底面
,过
作
垂直
交
于
点,作
垂直
交
于
点,平面
交
于
点,且
,
.
(1)试证明不论点在何位置,都有
;
(2)求的最小值;
(3)设平面与平面
的交线为
,求证:
.
图是某市月
日至
日的空气质量指数趋势图,空气质量指数(
)小于
表示空气质量优良,空气质量指数大于
表示空气重度污染,某人随机选择
月
日至
月
日中的某一天到达该市,并停留
天.
(1)求此人到达当日空气质量优良的概率;
(2)求此人停留期间至多有1天空气重度污染的概率.
已知函数.
(1)求函数的定义域和最小正周期;
(2)若,
,求
的值.
已知函数.
(1)当且
时,证明:
;
(2)若对,
恒成立,求实数
的取值范围;
(3)当时,证明:
.
如图所示,已知、
、
是长轴长为
的椭圆
上的三点,点
是长轴的一个端点,
过椭圆中心
,且
,
.
(1)求椭圆的方程;
(2)在椭圆上是否存点
,使得
?若存在,有几个(不必求出
点的坐标),若不存在,请说明理由;
(3)过椭圆上异于其顶点的任一点
,作圆
的两条线,切点分别为
、
,,若直线
在
轴、
轴上的截距分别为
、
,证明:
为定值.