游客
题文

【原创】甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.
(1)求甲在4局以内(含4局)赢得比赛的概率;
(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).

科目 数学   题型 解答题   难度 较难
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

如图,四棱锥的底面是正方形,侧棱底面,过垂直点,作垂直点,平面点,且.

(1)试证明不论点在何位置,都有
(2)求的最小值;
(3)设平面与平面的交线为,求证:.

图是某市日至日的空气质量指数趋势图,空气质量指数()小于表示空气质量优良,空气质量指数大于表示空气重度污染,某人随机选择日至日中的某一天到达该市,并停留天.

(1)求此人到达当日空气质量优良的概率;
(2)求此人停留期间至多有1天空气重度污染的概率.

已知函数.
(1)求函数的定义域和最小正周期;
(2)若,求的值.

已知函数.
(1)当时,证明:
(2)若对恒成立,求实数的取值范围;
(3)当时,证明:.

如图所示,已知是长轴长为的椭圆上的三点,点是长轴的一个端点,过椭圆中心,且

(1)求椭圆的方程;
(2)在椭圆上是否存点,使得?若存在,有几个(不必求出点的坐标),若不存在,请说明理由;
(3)过椭圆上异于其顶点的任一点,作圆的两条线,切点分别为,,若直线轴、轴上的截距分别为,证明:为定值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号