(本小题满分15分)已知抛物线上的一点(m,1)到焦点的距离为
.点
是抛物线上任意一点(除去顶点),过点
与
的直线和抛物线交于点
,过点
与的
直线和抛物线交于点
.分别以点
,
为切点的抛物线的切线交于点P′.
(I)求抛物线的方程;
(II)求证:点P′在y轴上.
(本小题满分14分)
设函数
(I)求函数在区间[0,1]上的最小值;
(II)当时,记曲线
在点
处的切线为
与x轴交于点
,求证:
(本小题满分14分)
已知椭圆的离心率为
,椭圆C上任意一点到椭圆两个焦点的距离之和为6。
(I)求椭圆C的方程;
(II)设直线与椭圆C交于A、B两点,点P(0,1),且|PA|=|PB|,求直线
的方程。
(本小题满分13分)如图,已知四棱柱ABCD—A1B1C1D1的底面是菱形,侧棱BB1⊥底面ABCD,E是侧棱CC1的中点。
(I)求证:AC⊥平面BDD1B1;
(II)求证:AC//平面B1DE。
(本小题满分15分)
在参加市里主办的科技知识竞赛的学生中随机选取了40名学生的成绩作为样本,这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组,成绩大于等于40分且小于50分;第二组,成绩大于等于50分且小于60分;……第六组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图。
在选取的40名学生中。
(I)求成绩在区间内的学生人数;
(II)从成绩大于等于80分的学生中随机选2名学生,求至少有1名学生成绩在区间[90,100]内的概率。
(本小题满分12分)
在中,角A,B,C的对边分别为
(I)求的值;
(II)若的值。