(本小题满分15分)已知抛物线上的一点(m,1)到焦点的距离为
.点
是抛物线上任意一点(除去顶点),过点
与
的直线和抛物线交于点
,过点
与的
直线和抛物线交于点
.分别以点
,
为切点的抛物线的切线交于点P′.
(I)求抛物线的方程;
(II)求证:点P′在y轴上.
某市在市内主干道北京路一侧修建圆形休闲广场.如图,圆形广场的圆心为O,半径为100m,并与北京路一边所在直线相切于点M.A为上半圆弧上一点,过点A作
的垂线,垂足为B.市园林局计划在△ABM内进行绿化.设△ABM的面积为S(单位:
),
(单位:弧度).
(I)将S表示为的函数;
(II)当绿化面积S最大时,试确定点A的位置,并求最大面积.
已知数列是首项为1,公差为2的等差数列,数列
的前n项和
.
(I)求数列的通项公式;
(II)设, 求数列
的前n项和
.
如图,四边形ABCD为正方形,PA平面ABCD,且AD= 2PA,E、F、G、H分别是线段PA、PD、CD、BC的中点.
(I)求证:BC∥平面EFG;
(II)求证:DH平面AEG.
已知函数.
(I)若函数为奇函数,求实数
的值;
(II)若对任意的,都有
成立,求实数
的取值范围.
在中,角A、B、C的对边分别为a、b、c,且角A、B、C成等差教列.
(I)若,求边c的值;
(II)设,求角A的最大值.