如图,已知两个正方形ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点。(1)若平面ABCD ⊥平面DCEF,求直线MN与平面DCEF所成角的正弦值;
(2)用反证法证明:直线ME 与 BN 是两条异面直线
已知向量满足
,且
.
(1)、求向量的坐标;(2)、求向量
与
的夹角.
已知圆的方程为
且与圆
相切.
(1)求直线的方程;
(2)设圆与
轴交于
两点,M是圆
上异于
的任意一点,过点
且与
轴垂直的直线为
,直线
交直线
于点P’,直线
交直线
于点Q’
求证:以P’Q’为直径的圆总过定点,并求出定点坐标.
已知函数在
上是增函数,若不等式
对于任意
恒成立,求实数
的取值范围。
将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,将得到的点数分别记为.
(1)求直线与圆
相切的概率;
(2)将的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
如图,在四棱锥O—ABCD中,底面ABCD是边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点。
(1)证明:直线MN∥平面OCD;
(2)求异面直线AB与MD所成角的大小;